van de Werken Harmen J G, Haan Josien C, Feodorova Yana, Bijos Dominika, Weuts An, Theunis Koen, Holwerda Sjoerd J B, Meuleman Wouter, Pagie Ludo, Thanisch Katharina, Kumar Parveen, Leonhardt Heinrich, Marynen Peter, van Steensel Bas, Voet Thierry, de Laat Wouter, Solovei Irina, Joffe Boris
Cancer Computational Biology Center, Erasmus MC Cancer Institute & Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands.
Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
Genome Res. 2017 Jun;27(6):922-933. doi: 10.1101/gr.213751.116. Epub 2017 Mar 24.
The spatial arrangement of chromatin is linked to the regulation of nuclear processes. One striking aspect of nuclear organization is the spatial segregation of heterochromatic and euchromatic domains. The mechanisms of this chromatin segregation are still poorly understood. In this work, we investigated the link between the primary genomic sequence and chromatin domains. We analyzed the spatial intranuclear arrangement of a human artificial chromosome (HAC) in a xenospecific mouse background in comparison to an orthologous region of native mouse chromosome. The two orthologous regions include segments that can be assigned to three major chromatin classes according to their gene abundance and repeat repertoire: (1) gene-rich and SINE-rich euchromatin; (2) gene-poor and LINE/LTR-rich heterochromatin; and (3) gene-depleted and satellite DNA-containing constitutive heterochromatin. We show, using fluorescence in situ hybridization (FISH) and 4C-seq technologies, that chromatin segments ranging from 0.6 to 3 Mb cluster with segments of the same chromatin class. As a consequence, the chromatin segments acquire corresponding positions in the nucleus irrespective of their chromosomal context, thereby strongly suggesting that this is their autonomous property. Interactions with the nuclear lamina, although largely retained in the HAC, reveal less autonomy. Taken together, our results suggest that building of a functional nucleus is largely a self-organizing process based on mutual recognition of chromosome segments belonging to the major chromatin classes.
染色质的空间排列与核过程的调控相关。核组织的一个显著特征是异染色质区和常染色质区的空间分隔。目前对这种染色质分隔的机制仍知之甚少。在这项研究中,我们探究了初级基因组序列与染色质结构域之间的联系。我们分析了在异种特异性小鼠背景下,人类人工染色体(HAC)在核内的空间排列,并与天然小鼠染色体的直系同源区域进行了比较。这两个直系同源区域包含根据基因丰度和重复序列库可归为三大主要染色质类别的片段:(1)富含基因且富含短散在核元件(SINE)的常染色质;(2)基因贫乏且富含长散在核元件(LINE)/长末端重复序列(LTR)的异染色质;以及(3)基因缺失且含有卫星DNA的组成型异染色质。我们利用荧光原位杂交(FISH)和4C-seq技术表明,长度在0.6至3 Mb范围内的染色质片段会与相同染色质类别的片段聚集在一起。因此,染色质片段在核内获得了相应的位置,而与它们的染色体背景无关,从而有力地表明这是它们的自主特性。与核纤层的相互作用虽然在很大程度上保留在HAC中,但显示出较低的自主性。综上所述,我们的结果表明,功能性细胞核的构建在很大程度上是一个基于属于主要染色质类别的染色体片段相互识别的自组织过程。