Valera Elvira, Spencer Brian, Mott Jennifer, Trejo Margarita, Adame Anthony, Mante Michael, Rockenstein Edward, Troncoso Juan C, Beach Thomas G, Masliah Eliezer, Desplats Paula
Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.
Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
Front Mol Neurosci. 2017 Oct 17;10:329. doi: 10.3389/fnmol.2017.00329. eCollection 2017.
Synucleinopathies, neurodegenerative disorders with alpha-synuclein (α-syn) accumulation, are the second leading cause of neurodegeneration in the elderly, however no effective disease-modifying alternatives exist for these diseases. Multiple system atrophy (MSA) is a fatal synucleinopathy characterized by the accumulation of toxic aggregates of α-syn within oligodendroglial cells, leading to demyelination and neurodegeneration, and the reduction of this accumulation might halt the fast progression of MSA. In this sense, the involvement of microRNAs (miRNAs) in synucleinopathies is yet poorly understood, and the potential of manipulating miRNA levels as a therapeutic tool is underexplored. In this study, we analyzed the levels of miRNAs that regulate the expression of autophagy genes in MSA cases, and investigated the mechanistic correlates of miRNA dysregulation in models of synucleinopathy. We found that microRNA-101 (miR-101) was significantly increased in the striatum of MSA patients, together with a reduction in the expression of its predicted target gene . Overexpression of miR-101 in oligodendroglial cell cultures resulted in a significant increase in α-syn accumulation, along with autophagy deficits. Opposite results were observed upon expression of an antisense construct targeting miR-101. Stereotaxic delivery of a lentiviral construct expressing anti-miR-101 into the striatum of the MBP-α-syn transgenic (tg) mouse model of MSA resulted in reduced oligodendroglial α-syn accumulation and improved autophagy. These results suggest that miRNA dysregulation contributes to MSA pathology, with miR-101 alterations potentially mediating autophagy impairments. Therefore, therapies targeting miR-101 may represent promising approaches for MSA and related neuropathologies with autophagy dysfunction.
突触核蛋白病是一类伴有α-突触核蛋白(α-syn)聚集的神经退行性疾病,是老年人神经退行性变的第二大主要原因,然而目前尚无针对这些疾病的有效疾病修饰疗法。多系统萎缩(MSA)是一种致命的突触核蛋白病,其特征是少突胶质细胞内α-syn毒性聚集体的积累,导致脱髓鞘和神经退行性变,减少这种积累可能会阻止MSA的快速进展。从这个意义上说,微小RNA(miRNA)在突触核蛋白病中的作用尚不清楚,将miRNA水平作为治疗工具的潜力也未得到充分探索。在本研究中,我们分析了MSA病例中调节自噬基因表达的miRNA水平,并在突触核蛋白病模型中研究了miRNA失调的机制相关性。我们发现,微小RNA-101(miR-101)在MSA患者的纹状体中显著增加,同时其预测靶基因的表达降低。在少突胶质细胞培养物中过表达miR-101导致α-syn积累显著增加,同时伴有自噬缺陷。在表达靶向miR-101的反义构建体时观察到相反的结果。将表达抗miR-101的慢病毒构建体立体定向注射到MSA的MBP-α-syn转基因(tg)小鼠模型的纹状体中,可减少少突胶质细胞α-syn的积累并改善自噬。这些结果表明,miRNA失调促成了MSA的病理过程,miR-101的改变可能介导了自噬损伤。因此,针对miR-101的疗法可能是治疗MSA和伴有自噬功能障碍的相关神经病理学的有前景的方法。