Liubarets T F, Shibata Y, Saenko V A, Bebeshko V G, Prysyazhnyuk A E, Bruslova K M, Fuzik M M, Yamashita S, Bazyka D A
Unit of Radiation Oncohematology and Blood Stem Cells Transplantation, Department of Hematology and Transplantology, National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Yuriy Illenka Str, 53, Kyiv, 04050, Ukraine.
Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
Radiat Environ Biophys. 2019 Nov;58(4):553-562. doi: 10.1007/s00411-019-00810-4. Epub 2019 Aug 2.
This population-based ecological study analyzes the prevalence of childhood leukemia in Ukraine before and after the Chornobyl nuclear power plant accident, based on the contamination status of the territory, time period, gender, and age. Three regions-Zhytomyr, Kyiv (except Kyiv city), and Chernihiv were included as areas contaminated by radioactive Cs from 1 to 15 Ci/km with annual effective doses exceeding 1.0 mSv, and Sumy region as the control (non-contaminated) area with Cs contamination less than 1 Ci/km and effective doses less than 0.5 mSv per year. The integrated database of the National Research Centre for Radiation Medicine used in the present study included 1085 childhood leukemia cases. Two aggregated periods were used for analysis: 1980-1986 (pre-accident) and 1987-2000 (post-accident). ICD-9 codes for leukemia (204-208.9) were used to perform analyses according to the extent of leukemic cells maturity (acute, chronic, and maturity unspecified leukemia), leukemic cell lineage (lymphoid, myeloid and lineage unspecified leukemia) and all leukemia cases in different age subgroups (1-4, 5-9, 10-14, and 15-19 years). Standard methods of descriptive epidemiology were used to calculate the prevalence of disease and frequency ratio in regression models. A statistically significant increase in frequency ratio for acute leukemia (1.44; 95% confidence interval (CI), 1.22-1.71), myeloid leukemia (2.93; 95% CI, 1.71-5.40), cell lineage unspecified leukemia (II) (1.48; 95% CI, 1.18-1.87) and all forms of leukemia (1.59; 95% CI, 1.36-1.86) was found for the post-accident period in highly contaminated areas. The results indicate that the frequency of childhood leukemia (and of some of its types) increased in contaminated areas during the post-accident period, suggesting that radiation exposure after the Chornobyl accident might be the cause of the increase. However, further analytical studies, with individual or at least group dose estimates, are needed to confirm a link between childhood leukemia and the Chornobyl accident.
这项基于人群的生态学研究,根据乌克兰各地区的污染状况、时间段、性别和年龄,分析了切尔诺贝利核电站事故前后儿童白血病的患病率。日托米尔、基辅(基辅市除外)和切尔尼戈夫这三个地区被列为受放射性铯污染的区域,污染程度为1至15居里/平方公里,年有效剂量超过1.0毫希沃特;苏梅地区作为对照(未受污染)区域,铯污染程度低于1居里/平方公里,年有效剂量低于0.5毫希沃特。本研究使用的国家辐射医学研究中心的综合数据库包含1085例儿童白血病病例。分析采用了两个汇总时间段:1980 - 1986年(事故前)和1987 - 2000年(事故后)。根据白血病细胞成熟程度(急性、慢性和成熟程度未明确的白血病)、白血病细胞谱系(淋巴细胞性、髓细胞性和谱系未明确的白血病)以及不同年龄亚组(1 - 4岁、5 - 9岁、10 - 14岁和15 - 19岁)的所有白血病病例,使用国际疾病分类第九版(ICD - 9)编码(204 - 208.9)进行分析。采用描述性流行病学的标准方法计算疾病患病率和回归模型中的频率比。在高污染地区,事故后时期急性白血病(1.44;95%置信区间(CI),1.22 - 1.71)、髓细胞性白血病(2.93;95% CI,1.71 - 5.40)、细胞谱系未明确的白血病(II)(1.48;95% CI,1.18 - 1.87)以及所有形式白血病(1.59;95% CI,1.36 - 1.86)的频率比有统计学显著增加。结果表明,事故后时期污染地区儿童白血病(及其某些类型)的发病率有所上升,这表明切尔诺贝利事故后的辐射暴露可能是发病率上升的原因。然而,需要进一步的分析研究,进行个体或至少群体剂量估计,以确认儿童白血病与切尔诺贝利事故之间的联系。