Suppr超能文献

快速NFT和API 20E与传统方法在从药品和化妆品中鉴定革兰氏阴性非发酵菌方面的比较。

Comparison of rapid NFT and API 20E with conventional methods for identification of gram-negative nonfermentative bacilli from pharmaceuticals and cosmetics.

作者信息

Palmieri M J, Carito S L, Meyer R F

机构信息

New York Regional Laboratory, U.S. Food and Drug Administration, Brooklyn 11232-1593.

出版信息

Appl Environ Microbiol. 1988 Nov;54(11):2838-41. doi: 10.1128/aem.54.11.2838-2841.1988.

Abstract

The accuracy of the Rapid NFT and the API 20E identification systems was evaluated by comparing them with conventional biochemical methods for the identification of gram-negative, nonfermentative bacilli. The organisms were recovered from preserved, nonsterile pharmaceutical and cosmetic products. A total of 123 test isolates that are commonly encountered in these products were used. By using the criteria of accurate and reliable identification without employing additional tests, Rapid NFT was found to be more accurate after 48 h of incubation than API 20E for characterizing isolates to the species level. Therefore, close agreement between NFT and conventional methods for identification of industrial gram-negative isolates provides evidence that the Rapid NFT system is an improved and rapid method for identifying these organisms to the species level with minimal use of supplementary tests.

摘要

通过将快速NFT和API 20E鉴定系统与用于鉴定革兰氏阴性非发酵杆菌的传统生化方法进行比较,评估了它们的准确性。这些微生物是从保存的非无菌药品和化妆品中分离出来的。总共使用了123株在这些产品中常见的测试分离株。按照无需进行额外测试即可准确可靠鉴定的标准,发现在孵育48小时后,快速NFT在将分离株鉴定到种水平方面比API 20E更准确。因此,NFT与传统方法在工业革兰氏阴性分离株鉴定方面的高度一致性证明,快速NFT系统是一种改进的快速方法,可在最少使用补充测试的情况下将这些微生物鉴定到种水平。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验