Suppr超能文献

用于控制细菌基因表达的CRISPR工具。

CRISPR Tools To Control Gene Expression in Bacteria.

作者信息

Vigouroux Antoine, Bikard David

机构信息

Synthetic Biology, Institut Pasteur, Paris, France.

Microbial Morphogenesis and Growth, Institut Pasteur, Paris, France.

出版信息

Microbiol Mol Biol Rev. 2020 Apr 1;84(2). doi: 10.1128/MMBR.00077-19. Print 2020 May 20.

Abstract

CRISPR-Cas systems have been engineered as powerful tools to control gene expression in bacteria. The most common strategy relies on the use of Cas effectors modified to bind target DNA without introducing DNA breaks. These effectors can either block the RNA polymerase or recruit it through activation domains. Here, we discuss the mechanistic details of how Cas effectors can modulate gene expression by blocking transcription initiation or acting as transcription roadblocks. CRISPR-Cas tools can be further engineered to obtain fine-tuned control of gene expression or target multiple genes simultaneously. Several caveats in using these tools have also been revealed, including off-target effects and toxicity, making it important to understand the design rules of engineered CRISPR-Cas effectors in bacteria. Alternatively, some types of CRISPR-Cas systems target RNA and could be used to block gene expression at the posttranscriptional level. Finally, we review applications of these tools in high-throughput screens and the progress and challenges in introducing CRISPR knockdown to other species, including nonmodel bacteria with industrial or clinical relevance. A deep understanding of how CRISPR-Cas systems can be harnessed to control gene expression in bacteria and build powerful tools will certainly open novel research directions.

摘要

CRISPR-Cas系统已被设计成控制细菌基因表达的强大工具。最常见的策略依赖于使用经过修饰的Cas效应物来结合目标DNA,而不引入DNA断裂。这些效应物既可以阻断RNA聚合酶,也可以通过激活结构域招募它。在这里,我们讨论Cas效应物如何通过阻断转录起始或作为转录障碍来调节基因表达的机制细节。CRISPR-Cas工具可以进一步设计,以实现对基因表达的微调控制或同时靶向多个基因。使用这些工具时的一些注意事项也已被揭示,包括脱靶效应和毒性,这使得了解工程化CRISPR-Cas效应物在细菌中的设计规则变得很重要。另外,某些类型的CRISPR-Cas系统靶向RNA,可用于在转录后水平阻断基因表达。最后,我们回顾了这些工具在高通量筛选中的应用,以及将CRISPR敲低技术引入其他物种(包括具有工业或临床相关性的非模式细菌)的进展和挑战。深入了解如何利用CRISPR-Cas系统控制细菌中的基因表达并构建强大的工具,必将开辟新的研究方向。

相似文献

1
CRISPR Tools To Control Gene Expression in Bacteria.用于控制细菌基因表达的CRISPR工具。
Microbiol Mol Biol Rev. 2020 Apr 1;84(2). doi: 10.1128/MMBR.00077-19. Print 2020 May 20.
2
Shooting the messenger: RNA-targetting CRISPR-Cas systems.RNA 靶向 CRISPR-Cas 系统:枪打出头鸟。
Biosci Rep. 2018 Jun 21;38(3). doi: 10.1042/BSR20170788. Print 2018 Jun 29.
3
Bacterial CRISPR: accomplishments and prospects.细菌的成簇规律间隔短回文重复序列(CRISPR):成就与前景
Curr Opin Microbiol. 2015 Oct;27:121-6. doi: 10.1016/j.mib.2015.08.007. Epub 2015 Sep 10.
5
Current and future prospects for CRISPR-based tools in bacteria.基于CRISPR的工具在细菌中的现状与未来前景。
Biotechnol Bioeng. 2016 May;113(5):930-43. doi: 10.1002/bit.25851. Epub 2015 Oct 27.
6
CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications.CRISPR 工具在原核系统工程中的应用:最新进展和新应用。
Annu Rev Chem Biomol Eng. 2024 Jul;15(1):389-430. doi: 10.1146/annurev-chembioeng-100522-114706. Epub 2024 Jul 3.
7
Controlling and enhancing CRISPR systems.调控和增强 CRISPR 系统。
Nat Chem Biol. 2021 Jan;17(1):10-19. doi: 10.1038/s41589-020-00700-7. Epub 2020 Dec 16.
8
Harnessing CRISPR-Cas systems for bacterial genome editing.利用 CRISPR-Cas 系统进行细菌基因组编辑。
Trends Microbiol. 2015 Apr;23(4):225-32. doi: 10.1016/j.tim.2015.01.008. Epub 2015 Feb 17.

引用本文的文献

2
Synthetic biology for space exploration.用于太空探索的合成生物学。
NPJ Microgravity. 2025 Jul 12;11(1):41. doi: 10.1038/s41526-025-00488-7.

本文引用的文献

5
Time-resolved imaging-based CRISPRi screening.基于时间分辨成像的 CRISPRi 筛选。
Nat Methods. 2020 Jan;17(1):86-92. doi: 10.1038/s41592-019-0629-y. Epub 2019 Nov 18.
8
10
Target sequence requirements of a type III-B CRISPR-Cas immune system.III-B 型 CRISPR-Cas 免疫系统的靶序列要求。
J Biol Chem. 2019 Jun 28;294(26):10290-10299. doi: 10.1074/jbc.RA119.008728. Epub 2019 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验