Suppr超能文献

基于半监督深度学习的视乳头周围区域三维分析

Semi-supervised deep learning based 3D analysis of the peripapillary region.

作者信息

Heisler Morgan, Bhalla Mahadev, Lo Julian, Mammo Zaid, Lee Sieun, Ju Myeong Jin, Beg Mirza Faisal, Sarunic Marinko V

机构信息

Simon Fraser University, Department of Engineering Science, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.

University of British Columbia, Faculty of Medicine, 317-2194 Health Sciences Mall, Vancouver, BC, V6 T 1Z3, Canada.

出版信息

Biomed Opt Express. 2020 Jun 19;11(7):3843-3856. doi: 10.1364/BOE.392648. eCollection 2020 Jul 1.

Abstract

Optical coherence tomography (OCT) has become an essential tool in the evaluation of glaucoma, typically through analyzing retinal nerve fiber layer changes in circumpapillary scans. Three-dimensional OCT volumes enable a much more thorough analysis of the optic nerve head (ONH) region, which may be the site of initial glaucomatous optic nerve damage. Automated analysis of this region is of great interest, though large anatomical variations and the termination of layers make the requisite peripapillary layer and Bruch's membrane opening (BMO) segmentation a challenging task. Several machine learning-based segmentation methods have been proposed for retinal layer segmentation, and a few for the ONH region, but they typically depend on either heavily averaged or pre-processed B-scans or a large amount of annotated data, which is a tedious task and resource-intensive. We evaluated a semi-supervised adversarial deep learning method for segmenting peripapillary retinal layers in OCT B-scans to take advantage of unlabeled data. We show that the use of a generative adversarial network and unlabeled data can improve the performance of segmentation. Additionally, we use a Faster R-CNN architecture to automatically segment the BMO. The proposed methods are then used for the 3D morphometric analysis of both control and glaucomatous ONH volumes to demonstrate the potential for clinical utility.

摘要

光学相干断层扫描(OCT)已成为评估青光眼的重要工具,通常是通过分析视乳头周围扫描中的视网膜神经纤维层变化来实现。三维OCT容积能够对视神经乳头(ONH)区域进行更全面的分析,该区域可能是青光眼性视神经初始损伤的部位。对该区域进行自动分析具有重要意义,然而,巨大的解剖变异和各层的终止使得对视乳头周围层和布鲁赫膜开口(BMO)进行必要的分割成为一项具有挑战性的任务。已经提出了几种基于机器学习的分割方法用于视网膜层分割,也有一些用于ONH区域,但它们通常依赖于高度平均或预处理的B扫描或大量的标注数据,这是一项繁琐且资源密集的任务。我们评估了一种半监督对抗深度学习方法,用于在OCT B扫描中分割视乳头周围视网膜层,以利用未标记的数据。我们表明,使用生成对抗网络和未标记数据可以提高分割性能。此外,我们使用更快的R-CNN架构自动分割BMO。然后将所提出的方法用于对照和青光眼性ONH容积的三维形态计量分析,以证明其临床应用潜力。

相似文献

1
Semi-supervised deep learning based 3D analysis of the peripapillary region.
Biomed Opt Express. 2020 Jun 19;11(7):3843-3856. doi: 10.1364/BOE.392648. eCollection 2020 Jul 1.
2
A machine-learning graph-based approach for 3D segmentation of Bruch's membrane opening from glaucomatous SD-OCT volumes.
Med Image Anal. 2017 Jul;39:206-217. doi: 10.1016/j.media.2017.04.007. Epub 2017 May 6.
6
Decoding glaucoma module premium edition.
Indian J Ophthalmol. 2022 Jun;70(6):2211. doi: 10.4103/ijo.IJO_1261_21.
7
Optic nerve head and peripapillary morphometrics in myopic glaucoma.
Invest Ophthalmol Vis Sci. 2014 Jun 3;55(7):4378-93. doi: 10.1167/iovs.14-14227.
10
Custom Optical Coherence Tomography Parameters for Distinguishing Papilledema from Pseudopapilledema.
Optom Vis Sci. 2019 Aug;96(8):599-608. doi: 10.1097/OPX.0000000000001408.

引用本文的文献

1
Loss values of style transfer from UBM to AS-OCT images for plateau iris classification.
Sci Rep. 2024 Dec 28;14(1):31157. doi: 10.1038/s41598-024-82327-5.
2
Deep learning and optical coherence tomography in glaucoma: Bridging the diagnostic gap on structural imaging.
Front Ophthalmol (Lausanne). 2022 Sep 21;2:937205. doi: 10.3389/fopht.2022.937205. eCollection 2022.
3
Cost-efficient and glaucoma-specifical model by exploiting normal OCT images with knowledge transfer learning.
Biomed Opt Express. 2023 Nov 3;14(12):6151-6171. doi: 10.1364/BOE.500917. eCollection 2023 Dec 1.
5
Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications.
Front Ophthalmol (Lausanne). 2023;2. doi: 10.3389/fopht.2022.1057896. Epub 2023 Jan 4.
8
Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey.
Eye Vis (Lond). 2022 Feb 2;9(1):6. doi: 10.1186/s40662-022-00277-3.
9
Multi-scale GCN-assisted two-stage network for joint segmentation of retinal layers and discs in peripapillary OCT images.
Biomed Opt Express. 2021 Mar 22;12(4):2204-2220. doi: 10.1364/BOE.417212. eCollection 2021 Apr 1.

本文引用的文献

1
Towards label-free 3D segmentation of optical coherence tomography images of the optic nerve head using deep learning.
Biomed Opt Express. 2020 Oct 15;11(11):6356-6378. doi: 10.1364/BOE.395934. eCollection 2020 Nov 1.
2
Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT.
Biomed Opt Express. 2019 Sep 12;10(10):5042-5058. doi: 10.1364/BOE.10.005042. eCollection 2019 Oct 1.
3
Deep learning based retinal OCT segmentation.
Comput Biol Med. 2019 Nov;114:103445. doi: 10.1016/j.compbiomed.2019.103445. Epub 2019 Sep 17.
5
Longitudinal Analysis of Bruch Membrane Opening Morphometry in Myopic Glaucoma.
J Glaucoma. 2019 Oct;28(10):889-895. doi: 10.1097/IJG.0000000000001332.
6
DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images.
Biomed Opt Express. 2018 Jun 25;9(7):3244-3265. doi: 10.1364/BOE.9.003244. eCollection 2018 Jul 1.
7
A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head.
Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):63-74. doi: 10.1167/iovs.17-22617.
8
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.
10
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验