Suppr超能文献

伊朗 COVID-19 疫情估计研究的快速综述。

Rapid review of COVID-19 epidemic estimation studies for Iran.

机构信息

University of British Columbia, Vancouver, Canada.

Aberdeen Centre for Health Data Sciences, University of Aberdeen, Aberdeen, UK.

出版信息

BMC Public Health. 2021 Feb 1;21(1):257. doi: 10.1186/s12889-021-10183-3.

Abstract

BACKGROUND

To inform researchers about the methodology and results of epidemic estimation studies performed for COVID-19 epidemic in Iran, we aimed to perform a rapid review.

METHODS

We searched for and included published articles, preprint manuscripts and reports that estimated numbers of cumulative or daily deaths or cases of COVID-19 in Iran. We found 131 studies and included 29 of them.

RESULTS

The included studies provided outputs for a total of 84 study-model/scenario combinations. Sixteen studies used 3-4 compartmental disease models. At the end of month two of the epidemic (2020-04-19), the lowest (and highest) values of predictions were 1,777 (388,951) for cumulative deaths, 20,588 (2,310,161) for cumulative cases, and at the end of month four (2020-06-20), were 3,590 (1,819,392) for cumulative deaths, and 144,305 (4,266,964) for cumulative cases. Highest estimates of cumulative deaths (and cases) for latest date available in 2020 were 418,834 on 2020-12-19 (and 41,475,792 on 2020-12-31). Model estimates predict an ominous course of epidemic progress in Iran. Increase in percent population using masks from the current situation to 95% might prevent 26,790 additional deaths (95% confidence interval 19,925-35,208) by the end of year 2020.

CONCLUSIONS

Meticulousness and degree of details reported for disease modeling and statistical methods used in the included studies varied widely. Greater heterogeneity was observed regarding the results of predicted outcomes. Consideration of minimum and preferred reporting items in epidemic estimation studies might better inform future revisions of the available models and new models to be developed. Not accounting for under-reporting drives the models' results misleading.

摘要

背景

为了向研究人员介绍针对伊朗 COVID-19 疫情进行的疫情估计研究的方法和结果,我们旨在进行快速审查。

方法

我们搜索并纳入了已发表的文章、预印本手稿和报告,这些文章和报告估计了伊朗 COVID-19 的累计或每日死亡或病例数。我们共发现 131 项研究,纳入了其中的 29 项。

结果

纳入的研究共提供了 84 项研究模型/方案组合的结果。16 项研究使用了 3-4 compartmental 疾病模型。在疫情的第二个月月底(2020-04-19),预测的最低(和最高)累计死亡值为 1777(388951),累计病例数为 20588(2310161),在第四个月月底(2020-06-20),累计死亡数为 3590(1819392),累计病例数为 144305(4266964)。2020 年最新数据中,累计死亡人数(和病例数)的最高估计值为 2020 年 12 月 19 日的 418834 人(2020 年 12 月 31 日的 41475792 人)。模型预测显示,伊朗疫情的发展趋势不容乐观。如果目前的口罩使用率(95%)增加到 95%,则到 2020 年底可能会避免额外的 26790 人死亡(95%置信区间为 19925-35208)。

结论

纳入研究中疾病建模和统计方法的细致程度和详细程度差异很大。预测结果的异质性更大。在疫情估计研究中考虑最低和首选报告项目可能会更好地为现有模型的修订和新模型的开发提供信息。未考虑漏报会导致模型结果产生误导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验