Garot Charlotte, Bettega Georges, Picart Catherine
CEA, Université de Grenoble Alpes, CNRS, ERL 5000, IRIG Institute, 17 rue des Martyrs, F-38054, Grenoble, France.
CNRS and Grenoble Institute of Engineering, UMR 5628, LMGP, 3 parvis Louis Néel F-38016 Grenoble, France.
Adv Funct Mater. 2020 Oct 15;31(5). doi: 10.1002/adfm.202006967. eCollection 2021 Jan 27.
Additive manufacturing (AM) allows the fabrication of customized bone scaffolds in terms of shape, pore size, material type and mechanical properties. Combined with the possibility to obtain a precise 3D image of the bone defects using computed tomography or magnetic resonance imaging, it is now possible to manufacture implants for patient-specific bone regeneration. This paper reviews the state-of-the-art of the different materials and AM techniques used for the fabrication of 3D-printed scaffolds in the field of bone tissue engineering. Their advantages and drawbacks are highlighted. For materials, specific criteria, were extracted from a literature study: biomimetism to native bone, mechanical properties, biodegradability, ability to be imaged (implantation and follow-up period), histological performances and sterilization process. AM techniques can be classified in three major categories: extrusion-based, powder-based and liquid-base. Their price, ease of use and space requirement are analyzed. Different combinations of materials/AM techniques appear to be the most relevant depending on the targeted clinical applications (implantation site, presence of mechanical constraints, temporary or permanent implant). Finally, some barriers impeding the translation to human clinics are identified, notably the sterilization process.
增材制造(AM)能够制造出在形状、孔径、材料类型和机械性能方面定制的骨支架。结合使用计算机断层扫描或磁共振成像获取骨缺损精确三维图像的可能性,现在能够制造用于患者特异性骨再生的植入物。本文综述了骨组织工程领域中用于制造3D打印支架的不同材料和增材制造技术的现状。突出了它们的优点和缺点。对于材料,从文献研究中提取了特定标准:对天然骨的仿生、机械性能、生物降解性、成像能力(植入期和随访期)、组织学性能和灭菌过程。增材制造技术可分为三大类:基于挤出的、基于粉末的和基于液体的。分析了它们的价格、易用性和空间需求。根据目标临床应用(植入部位、机械约束的存在、临时或永久植入物),不同的材料/增材制造技术组合似乎最为相关。最后,确定了一些阻碍向人体临床转化的障碍,尤其是灭菌过程。