Suppr超能文献

相似文献

1
Harnessing non-destructive 3D pathology.
Nat Biomed Eng. 2021 Mar;5(3):203-218. doi: 10.1038/s41551-020-00681-x. Epub 2021 Feb 15.
2
CAD systems for colorectal cancer from WSI are still not ready for clinical acceptance.
Sci Rep. 2021 Jul 13;11(1):14358. doi: 10.1038/s41598-021-93746-z.
3
Assessment of a computerized quantitative quality control tool for whole slide images of kidney biopsies.
J Pathol. 2021 Mar;253(3):268-278. doi: 10.1002/path.5590. Epub 2021 Jan 5.
4
Image analysis and machine learning in digital pathology: Challenges and opportunities.
Med Image Anal. 2016 Oct;33:170-175. doi: 10.1016/j.media.2016.06.037. Epub 2016 Jul 4.
5
Pathology imaging informatics for quantitative analysis of whole-slide images.
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1099-108. doi: 10.1136/amiajnl-2012-001540. Epub 2013 Aug 19.
6
Deep computational pathology in breast cancer.
Semin Cancer Biol. 2021 Jul;72:226-237. doi: 10.1016/j.semcancer.2020.08.006. Epub 2020 Aug 17.
7
Automated curation of large-scale cancer histopathology image datasets using deep learning.
Histopathology. 2024 Jun;84(7):1139-1153. doi: 10.1111/his.15159. Epub 2024 Feb 26.
8
Masked hypergraph learning for weakly supervised histopathology whole slide image classification.
Comput Methods Programs Biomed. 2024 Aug;253:108237. doi: 10.1016/j.cmpb.2024.108237. Epub 2024 May 23.
9
Whole-slide imaging and automated image analysis: considerations and opportunities in the practice of pathology.
Vet Pathol. 2014 Jan;51(1):211-23. doi: 10.1177/0300985813503570. Epub 2013 Oct 3.
10
Digital pathology and computational image analysis in nephropathology.
Nat Rev Nephrol. 2020 Nov;16(11):669-685. doi: 10.1038/s41581-020-0321-6. Epub 2020 Aug 26.

引用本文的文献

2
Deep-learning triage of 3D pathology datasets for comprehensive and efficient pathologist assessments.
bioRxiv. 2025 Jul 22:2025.07.20.665804. doi: 10.1101/2025.07.20.665804.
5
Three-dimensional assessments are necessary to determine the true, spatially resolved composition of tissues.
Cell Rep Methods. 2025 Jun 16;5(6):101075. doi: 10.1016/j.crmeth.2025.101075. Epub 2025 Jun 9.
7
Artificial Intelligence and Breast Cancer Management: From Data to the Clinic.
Cancer Innov. 2025 Feb 20;4(2):e159. doi: 10.1002/cai2.159. eCollection 2025 Apr.
8
INSIHGT: an accessible multi-scale, multi-modal 3D spatial biology platform.
Nat Commun. 2024 Dec 30;15(1):10888. doi: 10.1038/s41467-024-55248-0.

本文引用的文献

1
Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation.
Med Image Anal. 2020 Jul;63:101693. doi: 10.1016/j.media.2020.101693. Epub 2020 Apr 3.
3
How to define and optimize axial resolution in light-sheet microscopy: a simulation-based approach.
Biomed Opt Express. 2019 Dec 2;11(1):8-26. doi: 10.1364/BOE.11.000008. eCollection 2020 Jan 1.
4
Deep-learning approaches for Gleason grading of prostate biopsies.
Lancet Oncol. 2020 Feb;21(2):187-189. doi: 10.1016/S1470-2045(19)30793-4. Epub 2020 Jan 8.
5
Label-free visualization and characterization of extracellular vesicles in breast cancer.
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24012-24018. doi: 10.1073/pnas.1909243116. Epub 2019 Nov 15.
6
Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution.
Nat Methods. 2019 Nov;16(11):1109-1113. doi: 10.1038/s41592-019-0615-4. Epub 2019 Oct 31.
7
Kilohertz two-photon brain imaging in awake mice.
Nat Methods. 2019 Nov;16(11):1119-1122. doi: 10.1038/s41592-019-0597-2. Epub 2019 Oct 28.
9
Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0.
Nat Methods. 2019 Oct;16(10):1054-1062. doi: 10.1038/s41592-019-0579-4. Epub 2019 Sep 27.
10
The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue.
Nat Methods. 2019 Nov;16(11):1105-1108. doi: 10.1038/s41592-019-0554-0. Epub 2019 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验