Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
Environ Res. 2021 Sep;200:111386. doi: 10.1016/j.envres.2021.111386. Epub 2021 Jun 2.
Improved understanding of how prenatal exposure to environmental mixtures influences birth weight or other adverse outcomes is essential in protecting child health.
We illustrate a novel exposure continuum mapping (ECM) framework that combines the self-organizing map (SOM) algorithm with generalized additive modeling (GAM) in order to integrate spatially-correlated learning into the study mixtures of environmental chemicals. We demonstrate our method using biomarker data on chemical mixtures collected from a diverse mother-child cohort.
We obtained biomarker concentrations for 16 prevalent endocrine disrupting chemicals (EDCs) collected in the first-trimester from a large, ethnically/racially diverse cohort of healthy pregnant women (n = 604) during 2009-2012. This included 4 organochlorine pesticides (OCPs), 4 polybrominated diphenyl ethers (PBDEs), 4 polychlorinated biphenyls (PCBs), and 4 perfluoroalkyl substances (PFAS). We applied a two-stage exposure continuum mapping (ECM) approach to investigate the combined impact of the EDCs on birth weight. First, we analyzed our EDC data with SOM in order to reduce the dimensionality of our exposure matrix into a two-dimensional grid (i.e., map) where nodes depict the types of EDC mixture profiles observed within our data. We define this map as the 'exposure continuum map', as the gridded surface reflects a continuous sequence of exposure profiles where adjacent nodes are composed of similar mixtures and profiles at more distal nodes are more distinct. Lastly, we used GAM to estimate a joint-dose response based on the coordinates of our ECM in order to capture the relationship between participant location on the ECM and infant birth weight after adjusting for maternal age, race/ethnicity, pre-pregnancy body mass index (BMI), education, serum cotinine, total plasma lipids, and infant sex. Single chemical regression models were applied to facilitate comparison.
We found that an ECM with 36 mixture profiles retained 70% of the total variation in the exposure data. Frequency analysis showed that the most common profiles included relatively low concentrations for most EDCs (10%) and that profiles with relatively higher concentrations (for single or multiple EDCs) tended to be rarer (1%) but more distinct. Estimation of a joint-dose response function revealed that lower birth weights mapped to locations where profile compositions were dominated by relatively high PBDEs and select OCPs. Higher birth weights mapped to locations where profiles consisted of higher PCBs. These findings agreed well with results from single chemical models.
Findings from our study revealed a wide range of prenatal exposure scenarios and found that combinations exhibiting higher levels of PBDEs were associated with lower birth weight and combinations with higher levels of PCBs and PFAS were associated with increased birth weight. Our ECM approach provides a promising framework for supporting studies of other exposure mixtures.
深入了解产前暴露于环境混合物如何影响出生体重或其他不良后果,对于保护儿童健康至关重要。
我们展示了一种新的暴露连续体映射(ECM)框架,该框架将自组织映射(SOM)算法与广义加性建模(GAM)相结合,以便将空间相关学习纳入环境化学混合物的研究中。我们使用从 2009 年至 2012 年期间在一个大型、种族/族裔多样化的健康孕妇队列中收集的化学混合物生物标志物数据来演示我们的方法。
我们获得了来自一个大型、种族/族裔多样化的健康孕妇队列(n=604)在 2009-2012 年期间收集的 16 种常见内分泌干扰化学物质(EDC)在孕早期的生物标志物浓度。这包括 4 种有机氯农药(OCPs)、4 种多溴二苯醚(PBDEs)、4 种多氯联苯(PCBs)和 4 种全氟烷基物质(PFAS)。我们应用了两阶段暴露连续体映射(ECM)方法来研究 EDC 对出生体重的综合影响。首先,我们使用 SOM 分析我们的 EDC 数据,以便将我们的暴露矩阵的维度降低到一个二维网格(即地图),其中节点表示在我们的数据中观察到的 EDC 混合物分布类型。我们将此地图定义为“暴露连续体地图”,因为网格表面反映了暴露分布的连续序列,其中相邻节点由相似的混合物组成,而更遥远节点的分布则更为独特。最后,我们使用 GAM 根据 ECM 的坐标来估计联合剂量反应,以在调整母亲年龄、种族/族裔、孕前体重指数(BMI)、教育、血清可替宁、总血浆脂质和婴儿性别后,捕捉参与者在 ECM 上的位置与婴儿出生体重之间的关系。应用单化学物质回归模型进行比较。
我们发现,保留 70%暴露数据总变异的 ECM 具有 36 种混合物分布。频率分析表明,最常见的分布包括大多数 EDC 浓度相对较低(约 10%),而浓度相对较高(单一或多种 EDC)的分布则较为罕见(约 1%)但更为独特。联合剂量反应函数的估计表明,出生体重较低的情况映射到以相对较高的 PBDE 和选定的 OCP 为主导的分布位置。较高的出生体重映射到以较高的 PCB 为主导的分布位置。这些发现与单化学物质模型的结果非常吻合。
我们的研究结果揭示了广泛的产前暴露情况,并发现表现出较高 PBDE 水平的组合与较低的出生体重相关,而表现出较高 PCB 和 PFAS 水平的组合与较高的出生体重相关。我们的 ECM 方法为支持其他暴露混合物的研究提供了一个有前途的框架。