Grisanti Canozo Francisco Jose, Zuo Zhen, Martin James F, Samee Md Abul Hassan
Baylor College of Medicine, Houston, TX 77030, USA; Texas Heart Institute, Houston, TX 77030, USA.
Baylor College of Medicine, Houston, TX 77030, USA.
Cell Syst. 2022 Jan 19;13(1):58-70.e5. doi: 10.1016/j.cels.2021.09.004. Epub 2021 Oct 8.
Single-cell spatial transcriptomics (sc-ST) holds the promise to elucidate architectural aspects of complex tissues. Such analyses require modeling cell types in sc-ST datasets through their integration with single-cell RNA-seq datasets. However, this integration, is nontrivial since the two technologies differ widely in the number of profiled genes, and the datasets often do not share many marker genes for given cell types. We developed a neural network model, spatial transcriptomics cell-types assignment using neural networks (STANN), to overcome these challenges. Analysis of STANN's predicted cell types in mouse olfactory bulb (MOB) sc-ST data delineated MOB architecture beyond its morphological layer-based conventional description. We find that cell-type proportions remain consistent within individual morphological layers but vary significantly between layers. Notably, even within a layer, cellular colocalization patterns and intercellular communication mechanisms show high spatial variations. These observations imply a refinement of major cell types into subtypes characterized by spatially localized gene regulatory networks and receptor-ligand usage.
单细胞空间转录组学(sc-ST)有望阐明复杂组织的结构特征。此类分析需要通过将sc-ST数据集与单细胞RNA测序数据集整合,来对其中的细胞类型进行建模。然而,这种整合并非易事,因为这两种技术在已分析基因的数量上差异很大,而且对于给定的细胞类型,数据集通常没有许多共享的标记基因。我们开发了一种神经网络模型——利用神经网络进行空间转录组学细胞类型分配(STANN),以克服这些挑战。对小鼠嗅球(MOB)sc-ST数据中STANN预测的细胞类型进行分析,揭示了MOB的结构,超出了其基于形态学层的传统描述。我们发现,细胞类型比例在单个形态学层内保持一致,但在不同层之间有显著差异。值得注意的是,即使在一层内,细胞共定位模式和细胞间通讯机制也表现出高度的空间变异性。这些观察结果意味着将主要细胞类型细化为以空间定位的基因调控网络和受体-配体使用为特征的亚型。