Suppr超能文献

新型冠状病毒肺炎与人工智能:一种预测诊断严重程度的方法。

COVID-19 and Artificial Intelligence: An Approach to Forecast the Severity of Diagnosis.

作者信息

Udriștoiu Anca Loredana, Ghenea Alice Elena, Udriștoiu Ștefan, Neaga Manuela, Zlatian Ovidiu Mircea, Vasile Corina Maria, Popescu Mihaela, Țieranu Eugen Nicolae, Salan Alex-Ioan, Turcu Adina Andreea, Nicolosu Dragos, Calina Daniela, Cioboata Ramona

机构信息

Faculty of Automation, Computers and Electronics, University of Craiova, 200776 Craiova, Romania.

Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.

出版信息

Life (Basel). 2021 Nov 22;11(11):1281. doi: 10.3390/life11111281.

Abstract

(1) Background: The new SARS-COV-2 pandemic overwhelmed intensive care units, clinicians, and radiologists, so the development of methods to forecast the diagnosis' severity became a necessity and a helpful tool. (2) Methods: In this paper, we proposed an artificial intelligence-based multimodal approach to forecast the future diagnosis' severity of patients with laboratory-confirmed cases of SARS-CoV-2 infection. At hospital admission, we collected 46 clinical and biological variables with chest X-ray scans from 475 COVID-19 positively tested patients. An ensemble of machine learning algorithms (AI-Score) was developed to predict the future severity score as mild, moderate, and severe for COVID-19-infected patients. Additionally, a deep learning module (CXR-Score) was developed to automatically classify the chest X-ray images and integrate them into AI-Score. (3) Results: The AI-Score predicted the COVID-19 diagnosis' severity on the testing/control dataset (95 patients) with an average accuracy of 98.59%, average specificity of 98.97%, and average sensitivity of 97.93%. The CXR-Score module graded the severity of chest X-ray images with an average accuracy of 99.08% on the testing/control dataset (95 chest X-ray images). (4) Conclusions: Our study demonstrated that the deep learning methods based on the integration of clinical and biological data with chest X-ray images accurately predicted the COVID-19 severity score of positive-tested patients.

摘要

(1)背景:新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)大流行使重症监护病房、临床医生和放射科医生不堪重负,因此开发预测诊断严重程度的方法成为一种必要且有用的工具。(2)方法:在本文中,我们提出了一种基于人工智能的多模态方法,以预测实验室确诊的SARS-CoV-2感染患者未来诊断的严重程度。在患者入院时,我们收集了475例新冠病毒疾病(COVID-19)检测呈阳性患者的46项临床和生物学变量以及胸部X光扫描结果。开发了一组机器学习算法(AI评分),以预测COVID-19感染患者未来的严重程度评分,分为轻度、中度和重度。此外,还开发了一个深度学习模块(胸部X光评分),以自动对胸部X光图像进行分类并将其整合到AI评分中。(3)结果:AI评分在测试/对照数据集(95例患者)上预测COVID-19诊断严重程度的平均准确率为98.59%,平均特异性为98.97%,平均灵敏度为97.93%。胸部X光评分模块在测试/对照数据集(95张胸部X光图像)上对胸部X光图像严重程度分级的平均准确率为99.08%。(4)结论:我们的研究表明,基于临床和生物学数据与胸部X光图像整合的深度学习方法能够准确预测检测呈阳性患者的COVID-19严重程度评分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38b9/8617902/a7cafd0826c3/life-11-01281-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验