Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Sci Rep. 2022 May 4;12(1):7224. doi: 10.1038/s41598-022-11361-y.
Recent effective therapies enable most rheumatoid arthritis (RA) patients to achieve remission; however, some patients experience relapse. We aimed to predict relapse in RA patients through machine learning (ML) using data on ultrasound (US) examination and blood test. Overall, 210 patients with RA in remission at baseline were dichotomized into remission (n = 150) and relapse (n = 60) based on the disease activity at 2-year follow-up. Three ML classifiers [Logistic Regression, Random Forest, and extreme gradient boosting (XGBoost)] and data on 73 features (14 US examination data, 54 blood test data, and five data on patient information) at baseline were used for predicting relapse. The best performance was obtained using the XGBoost classifier (area under the receiver operator characteristic curve (AUC) = 0.747), compared with Random Forest and Logistic Regression (AUC = 0.719 and 0.701, respectively). In the XGBoost classifier prediction, ten important features, including wrist/metatarsophalangeal superb microvascular imaging scores, were selected using the recursive feature elimination method. The performance was superior to that predicted by researcher-selected features, which are conventional prognostic markers. These results suggest that ML can provide an accurate prediction of relapse in RA patients, and the use of predictive algorithms may facilitate personalized treatment options.
最近有效的治疗方法使大多数类风湿关节炎(RA)患者能够达到缓解;然而,一些患者会出现复发。我们旨在通过使用超声(US)检查和血液检查数据的机器学习(ML)来预测 RA 患者的复发。总体而言,根据 2 年随访时的疾病活动度,将 210 例基线时处于缓解期的 RA 患者分为缓解组(n=150)和复发组(n=60)。使用三种 ML 分类器[逻辑回归、随机森林和极端梯度提升(XGBoost)]和基线时的 73 个特征(14 个 US 检查数据、54 个血液检查数据和 5 个患者信息数据)来预测复发。与随机森林和逻辑回归(AUC=0.719 和 0.701)相比,XGBoost 分类器的表现最佳(AUC=0.747)。在 XGBoost 分类器预测中,使用递归特征消除方法选择了十个重要特征,包括腕/跖趾关节超微血管成像评分。其性能优于研究者选择的传统预后标志物的预测性能。这些结果表明,ML 可以为 RA 患者的复发提供准确的预测,并且使用预测算法可能有助于个性化治疗选择。