Suppr超能文献

记忆效应对传染病演化的影响:易感染者-感染者-恢复者传染病模型。

Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model.

机构信息

Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran.

Physics Department, Institute for Advanced Studies in Basic Sciences, 45195-1159 Zanjan, Iran.

出版信息

Phys Rev E. 2017 Feb;95(2-1):022409. doi: 10.1103/PhysRevE.95.022409. Epub 2017 Feb 21.

Abstract

Memory has a great impact on the evolution of every process related to human societies. Among them, the evolution of an epidemic is directly related to the individuals' experiences. Indeed, any real epidemic process is clearly sustained by a non-Markovian dynamics: memory effects play an essential role in the spreading of diseases. Including memory effects in the susceptible-infected-recovered (SIR) epidemic model seems very appropriate for such an investigation. Thus, the memory prone SIR model dynamics is investigated using fractional derivatives. The decay of long-range memory, taken as a power-law function, is directly controlled by the order of the fractional derivatives in the corresponding nonlinear fractional differential evolution equations. Here we assume "fully mixed" approximation and show that the epidemic threshold is shifted to higher values than those for the memoryless system, depending on this memory "length" decay exponent. We also consider the SIR model on structured networks and study the effect of topology on threshold points in a non-Markovian dynamics. Furthermore, the lack of access to the precise information about the initial conditions or the past events plays a very relevant role in the correct estimation or prediction of the epidemic evolution. Such a "constraint" is analyzed and discussed.

摘要

记忆对与人类社会相关的每一个过程的进化都有很大的影响。其中,传染病的进化直接与个体的经历有关。事实上,任何真实的传染病过程都明显地由非马尔可夫动力学所维持:记忆效应在疾病的传播中起着至关重要的作用。将记忆效应纳入易感-感染-恢复(SIR)传染病模型中,对于这样的研究似乎非常合适。因此,我们使用分数导数来研究易感染 SIR 模型的动力学。长程记忆的衰减被视为幂律函数,直接由相应非线性分数微分演化方程中分数导数的阶数控制。在这里,我们假设“完全混合”近似,并表明传染病阈值会高于无记忆系统的阈值,这取决于这种记忆“长度”衰减指数。我们还在结构网络上研究了 SIR 模型,并研究了非马尔可夫动力学中拓扑对阈值点的影响。此外,缺乏对初始条件或过去事件的精确信息的了解,在传染病演变的正确估计或预测中起着非常重要的作用。我们分析和讨论了这种“约束”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f1/7217510/41254242c49f/e022409_1.jpg

相似文献

1
Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model.
Phys Rev E. 2017 Feb;95(2-1):022409. doi: 10.1103/PhysRevE.95.022409. Epub 2017 Feb 21.
2
Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks.
Phys Rev Lett. 2013 Mar 8;110(10):108701. doi: 10.1103/PhysRevLett.110.108701. Epub 2013 Mar 5.
3
The large graph limit of a stochastic epidemic model on a dynamic multilayer network.
J Biol Dyn. 2018 Dec;12(1):746-788. doi: 10.1080/17513758.2018.1515993.
4
Effects of void nodes on epidemic spreads in networks.
Sci Rep. 2022 Mar 10;12(1):3957. doi: 10.1038/s41598-022-07985-9.
5
A Fractional Order Recovery SIR Model from a Stochastic Process.
Bull Math Biol. 2016 Mar;78(3):468-99. doi: 10.1007/s11538-016-0151-7. Epub 2016 Mar 3.
6
#stayhome to contain Covid-19: Neuro-SIR - Neurodynamical epidemic modeling of infection patterns in social networks.
Expert Syst Appl. 2021 Mar 1;165:113970. doi: 10.1016/j.eswa.2020.113970. Epub 2020 Sep 3.
7
Human mobility and time spent at destination: impact on spatial epidemic spreading.
J Theor Biol. 2013 Dec 7;338:41-58. doi: 10.1016/j.jtbi.2013.08.032. Epub 2013 Sep 4.
8
Front dynamics in fractional-order epidemic models.
J Theor Biol. 2011 Jun 21;279(1):9-16. doi: 10.1016/j.jtbi.2011.03.012. Epub 2011 Mar 21.
10
Identifying epidemic threshold by temporal profile of outbreaks on networks.
Chaos. 2019 Oct;29(10):103141. doi: 10.1063/1.5120491.

引用本文的文献

1
Effects of quarantine and vaccination on the transmission of Lumpy skin disease: A fractional approach.
PLoS One. 2025 Jul 17;20(7):e0327673. doi: 10.1371/journal.pone.0327673. eCollection 2025.
2
A fractional order model for the transmission dynamics of shigellosis.
Heliyon. 2024 May 16;10(10):e31242. doi: 10.1016/j.heliyon.2024.e31242. eCollection 2024 May 30.
4
A combined neural ODE-Bayesian optimization approach to resolve dynamics and estimate parameters for a modified SIR model with immune memory.
Heliyon. 2024 Sep 24;10(19):e38276. doi: 10.1016/j.heliyon.2024.e38276. eCollection 2024 Oct 15.
7
Stability analysis of fractional order memristor synapse-coupled hopfield neural network with ring structure.
Cogn Neurodyn. 2023 Aug;17(4):1045-1059. doi: 10.1007/s11571-022-09844-9. Epub 2022 Aug 27.
8
Modelling disease spread with spatio-temporal fractional derivative equations and saturated incidence rate.
Model Earth Syst Environ. 2023 Apr 8:1-13. doi: 10.1007/s40808-023-01773-8.
9
Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic.
Chaos Solitons Fractals. 2023 Apr;169:113294. doi: 10.1016/j.chaos.2023.113294. Epub 2023 Mar 2.

本文引用的文献

1
Fractional Dynamics of Network Growth Constrained by Aging Node Interactions.
PLoS One. 2016 May 12;11(5):e0154983. doi: 10.1371/journal.pone.0154983. eCollection 2016.
2
Predicting the epidemic threshold of the susceptible-infected-recovered model.
Sci Rep. 2016 Apr 19;6:24676. doi: 10.1038/srep24676.
3
Cooperative peer-to-peer multiagent-based systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022805. doi: 10.1103/PhysRevE.92.022805. Epub 2015 Aug 10.
4
A forgotten epidemic that changed medicine: measles in the US Army, 1917-18.
Lancet Infect Dis. 2015 Jul;15(7):852-61. doi: 10.1016/S1473-3099(15)00109-7. Epub 2015 Jun 9.
5
Will Africa's future epidemic ride on forgotten lessons from the Ebola epidemic?
BMC Med. 2015 May 14;13:116. doi: 10.1186/s12916-015-0359-7.
6
Aging scaled Brownian motion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042107. doi: 10.1103/PhysRevE.91.042107. Epub 2015 Apr 7.
7
Simulating non-Markovian stochastic processes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042108. doi: 10.1103/PhysRevE.90.042108. Epub 2014 Oct 6.
8
Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks.
Phys Rev Lett. 2013 Mar 8;110(10):108701. doi: 10.1103/PhysRevLett.110.108701. Epub 2013 Mar 5.
9
Critical behavior of the susceptible-infected-recovered model on a square lattice.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051921. doi: 10.1103/PhysRevE.82.051921. Epub 2010 Nov 17.
10
Epidemic threshold for the susceptible-infectious-susceptible model on random networks.
Phys Rev Lett. 2010 Jun 25;104(25):258701. doi: 10.1103/PhysRevLett.104.258701. Epub 2010 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验