Suppr超能文献

AnnotatorJ:一个用于简化细胞区室手动标注的 ImageJ 插件。

AnnotatorJ: an ImageJ plugin to ease hand annotation of cellular compartments.

机构信息

Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary.

Doctoral School of Biology, University of Szeged, 6726 Szeged, Hungary.

出版信息

Mol Biol Cell. 2020 Sep 15;31(20):2179-2186. doi: 10.1091/mbc.E20-02-0156. Epub 2020 Jul 22.

Abstract

AnnotatorJ combines single-cell identification with deep learning (DL) and manual annotation. Cellular analysis quality depends on accurate and reliable detection and segmentation of cells so that the subsequent steps of analyses, for example, expression measurements, may be carried out precisely and without bias. DL has recently become a popular way of segmenting cells, performing unimaginably better than conventional methods. However, such DL applications may be trained on a large amount of annotated data to be able to match the highest expectations. High-quality annotations are unfortunately expensive as they require field experts to create them, and often cannot be shared outside the lab due to medical regulations. We propose AnnotatorJ, an ImageJ plugin for the semiautomatic annotation of cells (or generally, objects of interest) on (not only) microscopy images in 2D that helps find the true contour of individual objects by applying U-Net-based presegmentation. The manual labor of hand annotating cells can be significantly accelerated by using our tool. Thus, it enables users to create such datasets that could potentially increase the accuracy of state-of-the-art solutions, DL or otherwise, when used as training data.

摘要

AnnotatorJ 将单细胞鉴定与深度学习 (DL) 和手动注释相结合。细胞分析质量取决于对细胞的准确和可靠检测和分割,以便后续的分析步骤,例如表达测量,可以精确且无偏差地进行。DL 最近已成为分割细胞的一种流行方法,其性能远超传统方法。但是,这样的 DL 应用程序可能需要在大量已注释的数据上进行训练,才能达到最高的期望。高质量的注释非常昂贵,因为它们需要领域专家来创建,并且由于医疗法规,通常不能在实验室之外共享。我们提出了 AnnotatorJ,这是一个用于(不仅)在显微镜图像上半自动注释细胞(或一般意义上的感兴趣对象)的 ImageJ 插件,它通过应用基于 U-Net 的预分割来帮助找到单个对象的真实轮廓。通过使用我们的工具,可以显著加快手动注释细胞的人工劳动。因此,它使用户能够创建此类数据集,当用作训练数据时,这些数据集可以潜在地提高最先进解决方案(DL 或其他)的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4329/7550707/0f5802ebba4b/mbc-31-2179-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验