文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Applications of Surface Modification Technologies in Nanomedicine for Deep Tumor Penetration.

作者信息

Li Zimu, Shan Xiaoting, Chen Zhidong, Gao Nansha, Zeng Wenfeng, Zeng Xiaowei, Mei Lin

机构信息

Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China.

Tianjin Key Laboratory of Biomedical Materials Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 China.

出版信息

Adv Sci (Weinh). 2020 Nov 27;8(1):2002589. doi: 10.1002/advs.202002589. eCollection 2020 Jan.


DOI:10.1002/advs.202002589
PMID:33437580
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7788636/
Abstract

The impermeable barrier of solid tumors due to the complexity of their components limits the treatment effect of nanomedicine and hinders its clinical translation. Several methods are available to increase the penetrability of nanomedicine, yet they are too complex to be effective, operational, or practical. Surface modification employs the characteristics of direct contact between multiphase surfaces to achieve the most direct and efficient penetration of solid tumors. Furthermore, their simple operation makes their use feasible. In this review, the latest surface modification strategies for the penetration of nanomedicine into solid tumors are summarized and classified into "bulldozer strategies" and "mouse strategies." Additionally, the evaluation methods, existing problems, and the development prospects of these technologies are discussed.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/c0b6fd3baeb2/ADVS-8-2002589-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/dcfb525851df/ADVS-8-2002589-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/6fa7f06b0775/ADVS-8-2002589-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/c97e50a05ea6/ADVS-8-2002589-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/a7fa9244c466/ADVS-8-2002589-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/72284f1189d0/ADVS-8-2002589-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/277c421d33b7/ADVS-8-2002589-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/13eae9b090cc/ADVS-8-2002589-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/1d005be2cbf1/ADVS-8-2002589-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/92125f1efee2/ADVS-8-2002589-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/68a6ce32b9bb/ADVS-8-2002589-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/a66d7a8504dc/ADVS-8-2002589-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/6f3c42c73ccf/ADVS-8-2002589-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/c0b6fd3baeb2/ADVS-8-2002589-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/dcfb525851df/ADVS-8-2002589-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/6fa7f06b0775/ADVS-8-2002589-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/c97e50a05ea6/ADVS-8-2002589-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/a7fa9244c466/ADVS-8-2002589-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/72284f1189d0/ADVS-8-2002589-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/277c421d33b7/ADVS-8-2002589-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/13eae9b090cc/ADVS-8-2002589-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/1d005be2cbf1/ADVS-8-2002589-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/92125f1efee2/ADVS-8-2002589-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/68a6ce32b9bb/ADVS-8-2002589-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/a66d7a8504dc/ADVS-8-2002589-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/6f3c42c73ccf/ADVS-8-2002589-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/823c/7788636/c0b6fd3baeb2/ADVS-8-2002589-g013.jpg

相似文献

[1]
Applications of Surface Modification Technologies in Nanomedicine for Deep Tumor Penetration.

Adv Sci (Weinh). 2020-11-27

[2]
Transcytosis-Inducing Multifunctional Albumin Nanomedicines with Deep Penetration Ability for Image-Guided Solid Tumor Treatment.

Small. 2023-12

[3]
Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives.

Bioact Mater. 2023-10-26

[4]
Sequential Intra-Intercellular Delivery of Nanomedicine for Deep Drug-Resistant Solid Tumor Penetration.

ACS Appl Mater Interfaces. 2020-2-17

[5]
Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities.

Crit Rev Biomed Eng. 2012

[6]
Emerging strategies against tumor-associated fibroblast for improved the penetration of nanoparticle into desmoplastic tumor.

Eur J Pharm Biopharm. 2021-8

[7]
Sequentially Responsive Shell-Stacked Nanoparticles for Deep Penetration into Solid Tumors.

Adv Mater. 2017-6-20

[8]
Penetration and translocation of functional inorganic nanomaterials into biological barriers.

Adv Drug Deliv Rev. 2022-12

[9]
Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine.

Adv Colloid Interface Sci. 2024-4

[10]
Barrier permeation and improved nanomedicine delivery in tumor microenvironments.

Cancer Lett. 2023-5-28

引用本文的文献

[1]
Nanomedicines for the treatment of genitourinary neoplasms.

Mater Today Bio. 2025-8-3

[2]
Mechanism and application of copper-based nanomedicines in activating tumor immunity through oxidative stress modulation.

Front Pharmacol. 2025-7-11

[3]
GGT and GSH-triggered nanoplatform for efficient gambogic acid delivery and tumor penetration in triple-negative breast cancer.

Mater Today Bio. 2025-6-27

[4]
CeO nanozyme-embedded thermal-deformative polymer for site-specific chemotherapy via HIF-1α-P-gp/lipolysis axis reversal.

Asian J Pharm Sci. 2025-6

[5]
Hiding in Plain Sight: Cell Biomimicry for Improving Hematological Cancer Outcomes.

Nanomaterials (Basel). 2025-5-15

[6]
Metal-polydopamine coordinated coatings on titanium surface: enhancing corrosion resistance and biological property.

RSC Adv. 2025-4-28

[7]
Size-transformable nanotherapeutics for cancer therapy.

Acta Pharm Sin B. 2025-2

[8]
Role of Cell Adhesion in Cancer Metastasis Formation: A Review.

ACS Omega. 2025-2-9

[9]
Tumor microenvironment targeted nano-drug delivery systems for multidrug resistant tumor therapy.

Theranostics. 2025-1-2

[10]
Advances in nanotechnology-based approaches for the treatment of head and neck squamous cell carcinoma.

RSC Adv. 2024-12-9

本文引用的文献

[1]
Nanoparticle-based drug delivery systems for cancer therapy.

Smart Mater Med. 2020

[2]
Size and charge dual-transformable mesoporous nanoassemblies for enhanced drug delivery and tumor penetration.

Chem Sci. 2020-2-3

[3]
Bacteria as Nanoparticles Carrier for Enhancing Penetration in a Tumoral Matrix Model.

Adv Mater Interfaces. 2020-4-21

[4]
Mussel-Inspired Polydopamine: The Bridge for Targeting Drug Delivery System and Synergistic Cancer Treatment.

Macromol Biosci. 2020-10

[5]
Tumor-Exocytosed Exosome/Aggregation-Induced Emission Luminogen Hybrid Nanovesicles Facilitate Efficient Tumor Penetration and Photodynamic Therapy.

Angew Chem Int Ed Engl. 2020-8-10

[6]
Enzyme-Triggered Transcytosis of Dendrimer-Drug Conjugate for Deep Penetration into Pancreatic Tumors.

ACS Nano. 2020-4-28

[7]
Nitric oxide-induced stromal depletion for improved nanoparticle penetration in pancreatic cancer treatment.

Biomaterials. 2020-7

[8]
Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications.

Macromol Rapid Commun. 2020-3-5

[9]
Near-Infrared Laser-Triggered Dimorphic Transformation of BF-Azadipyrromethene Nanoaggregates for Enhanced Solid Tumor Penetration.

ACS Nano. 2020-3-24

[10]
A Size-Changeable Collagenase-Modified Nanoscavenger for Increasing Penetration and Retention of Nanomedicine in Deep Tumor Tissue.

Adv Mater. 2020-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索