Suppr超能文献

银纳米结构:检测灵敏度有限、毒性及抗炎作用

Silver Nanostructures: Limited Sensitivity of Detection, Toxicity and Anti-Inflammation Effects.

作者信息

Morozova Olga V

机构信息

Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya Street 1a, 119435 Moscow, Russia.

Ivanovsky Institute of Virology, National Research Center of Epidemiology and Microbiology of N. F. Gamaleya, Russian Ministry of Health, Gamaleya Street 16, 123098 Moscow, Russia.

出版信息

Int J Mol Sci. 2021 Sep 14;22(18):9928. doi: 10.3390/ijms22189928.

Abstract

Nanosilver with sizes 1-100 nm at least in one dimension is widely used due to physicochemical, anti-inflammatory, anti-angiogenesis, antiplatelet, antifungal, anticancer, antibacterial, and antiviral properties. Three modes of the nanosilver action were suggested: "Trojan horse", inductive, and quantum mechanical. The Ag cations have an affinity to thiol, amino, phosphate, and carboxyl groups. Multiple mechanisms of action towards proteins, DNA, and membranes reduce a risk of pathogen resistance but inevitably cause toxicity for cells and organisms. Silver nanoparticles (AgNP) are known to generate two reactive oxygen species (ROS)-superoxide (•O) and hydroxyl (•OH) radicals, which inhibit the cellular antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and cause mechanical damage of membranes. Ag release and replacement by electrolyte ions with potential formation of insoluble AgCl result in NP instability and interactions of heavy metals with nucleic acids and proteins. Protein shells protect AgNP core from oxidation, dissolution, and aggregation, and provide specific interactions with ligands. These nanoconjugates can be used for immunoassays and diagnostics, but the sensitivity is limited at 10 pg and specificity is restricted by binding with protective proteins (immunoglobulins, fibrinogen, albumin, and others). Thus, broad implementation of Ag nanostructures revealed limitations such as instability; binding with major blood proteins; damage of proteins, nucleic acids, and membranes; and immunosuppression of the majority of cytokines.

摘要

至少在一维尺寸上为1-100纳米的纳米银由于其物理化学、抗炎、抗血管生成、抗血小板、抗真菌、抗癌、抗菌和抗病毒特性而被广泛使用。纳米银的作用方式有三种:“特洛伊木马”、诱导和量子力学。银阳离子对硫醇、氨基、磷酸和羧基具有亲和力。对蛋白质、DNA和膜的多种作用机制降低了病原体产生抗性的风险,但不可避免地会对细胞和生物体造成毒性。已知银纳米颗粒(AgNP)会产生两种活性氧(ROS)——超氧阴离子(•O)和羟基自由基(•OH),它们会抑制细胞抗氧化酶(超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶)并对膜造成机械损伤。银的释放以及被电解质离子取代并可能形成不溶性氯化银会导致纳米颗粒不稳定,以及重金属与核酸和蛋白质发生相互作用。蛋白质外壳可保护AgNP核心免受氧化、溶解和聚集,并与配体产生特异性相互作用。这些纳米缀合物可用于免疫测定和诊断,但灵敏度限制在10皮克,特异性受到与保护性蛋白质(免疫球蛋白、纤维蛋白原、白蛋白等)结合的限制。因此,银纳米结构的广泛应用显示出局限性,如不稳定性;与主要血液蛋白结合;对蛋白质、核酸和膜的损伤;以及对大多数细胞因子的免疫抑制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd4/8464889/488b665655c5/ijms-22-09928-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验